Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Diagnostics (Basel) ; 13(1)2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2242505

ABSTRACT

(1) Background: Coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) raises concerns to contribute to an increased mortality. The incidence of CAPA varies widely within hospitals and countries, partly because of difficulties in obtaining a reliable diagnosis. (2) Methods: Here, we assessed Aspergillus culture-positive and culture-negative respiratory tract specimens via direct fungal microscopy (gold standard) and compared the results with galactomannan enzyme immunoassay (GM-EIA) and Aspergillus PCR. (3) Results: 241 respiratory samples from patients suffering from SARS-CoV-2 pneumonia were evaluated. Results showed both diagnostic tools, Aspergillus PCR and GM-EIA, to be positive or negative displaying a sensitivity of 0.90, a specificity of 0.77, a negative predictive value (NPV) of 0.95, and a positive predictive value (PPV) of 0.58 in Aspergillus sp. culture and microscopic-positive specimens. Non-bronchoalveolar lavage (BAL) samples, obtained within a few days from the same patient, showed a high frequency of intermittent positive or negative GM-EIA or Aspergillus PCR results. Positivity of a single biomarker is insufficient for a proper diagnosis. A broad spectrum of Aspergillus species was detected. (4) Conclusions: Our study highlights the challenges of combined biomarker testing as part of diagnosing CAPA. From the results presented, we highly recommend the additional performance of direct microscopy in respiratory specimens to avoid overestimation of fungal infections by applying biomarkers.

2.
J Clin Med ; 11(17)2022 Aug 31.
Article in English | MEDLINE | ID: covidwho-2023800

ABSTRACT

The development of extracorporeal life support technology has added a new dimension to the care of critically ill patients who fail conventional treatment options. Extracorporeal membrane oxygenation (ECMO)-specialized temporary life support for patients with severe cardiac or pulmonary failure-plays a role in bridging the time for organ recovery, transplant, or permanent assistance. The overall patient outcome is dependent on the underlying disease, comorbidities, patient reaction to critical illness, and potential adverse events during ECMO. Moreover, the contact of the blood with the large artificial surface of an extracorporeal system circuit triggers complex inflammatory and coagulation responses. These processes may further lead to endothelial injury and disrupted microcirculation with consequent end-organ dysfunction and the development of adverse events like thromboembolism. Therefore, systemic anticoagulation is considered crucial to alleviate the risk of thrombosis and failure of ECMO circuit components. The gold standard and most used anticoagulant during extracorporeal life support is unfractionated heparin, with all its benefits and disadvantages. However, therapeutic anticoagulation of a critically ill patient carries the risk of clinically relevant bleeding with the potential for permanent injury or death. Similarly, thrombotic events may occur. Therefore, different anticoagulation strategies are employed, while the monitoring and the balance of procoagulant and anticoagulatory factors is of immense importance. This narrative review summarizes the most recent considerations on anticoagulation during ECMO support, with a special focus on anticoagulation monitoring and future directions.

3.
Diagnostics (Basel) ; 12(6)2022 Jun 06.
Article in English | MEDLINE | ID: covidwho-1884056

ABSTRACT

During the last five decades, lung sonography has developed into a core competency of intensive care medicine. It is a highly accurate bedside tool, with clear diagnostic criteria for most causes of respiratory failure (pneumothorax, pulmonary edema, pneumonia, pulmonary embolism, chronic obstructive pulmonary disease, asthma, and pleural effusion). It helps in distinguishing a hypovolemic from a cardiogenic, obstructive, or distributive shock. In addition to diagnostics, it can also be used to guide ventilator settings, fluid administration, and even antimicrobial therapy, as well as to assess diaphragmatic function. Moreover, it provides risk-reducing guidance during invasive procedures, e.g., intubation, thoracocentesis, or percutaneous dilatational tracheostomy. The recent pandemic has further increased its scope of clinical applications in the management of COVID-19 patients, from their initial presentation at the emergency department, during their hospitalization, and after their discharge into the community. Despite its increasing use, a consensus on education, assessment of competencies, and certification is still missing. Deep learning and artificial intelligence are constantly developing in medical imaging, and contrast-enhanced ultrasound enables new diagnostic perspectives. This review summarizes the clinical aspects of lung sonography in intensive care medicine and provides an overview about current training modalities, diagnostic limitations, and future developments.

4.
J Clin Med ; 11(5)2022 Feb 24.
Article in English | MEDLINE | ID: covidwho-1736961

ABSTRACT

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) is a specialised life support modality for patients with refractory cardiac or respiratory failure. Multiple studies strived to evaluate the benefits of ECMO support, but its efficacy remains controversial with still inconsistent and sparse information. METHODS: This retrospective analysis included patients with ECMO support, admitted between January 2010 and December 2019 at a tertiary university ECMO referral centre in Austria. The primary endpoint of the study was overall all-cause three-month mortality with risk factors and predictors of mortality. Secondary endpoints covered the analysis of demographic and clinical characteristics of patients needing ECMO, including incidence and type of adverse events during support. RESULTS: In total, 358 patients fulfilled inclusion criteria and received ECMO support due to cardiogenic shock (258, 72%), respiratory failure (88, 25%) or hypothermia (12, 3%). In total, 41% (145) of patients died within the first three months, with the median time to death of 9 (1-87) days. The multivariate analysis identified hypothermia (HR 3.8, p < 0.001), the Simplified Acute Physiology Score III (HR 1.0, p < 0.001), ECMO initiation on weekends (HR 1.6, p = 0.016) and haemorrhage during ECMO support (HR 1.7, p = 0.001) as factors with higher risk for mortality. Finally, the most frequent adverse event was haemorrhage (160, 45%) followed by thrombosis. CONCLUSIONS: ECMO is an invasive advanced support system with a high risk of complications. Nevertheless, well-selected patients can be successfully rescued from life-threatening conditions by prolonging the therapeutic window to either solve the underlying problem or install a long-term assist device. Hypothermia, disease severity, initiation on weekends and haemorrhage during ECMO support increase the risk for mortality. In the case of decision making in a setting of limited (ICU) resources, the reported risk factors for mortality may be contemplable, especially when judging a possible ECMO support termination.

5.
J Fungi (Basel) ; 8(2)2022 Jan 18.
Article in English | MEDLINE | ID: covidwho-1625401

ABSTRACT

Coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) raises concerns as to whether it contributes to an increased mortality. The incidence of CAPA varies widely within hospitals and countries, partly because of difficulties in obtaining a reliable diagnosis. We implemented a routine screening of respiratory specimens in COVID-19 ICU patients for Aspergillus species using culture and galactomannan (GM) detection from serum and/or bronchoalveolar lavages (BAL). Out of 329 ICU patients treated during March 2020 and April 2021, 23 (7%) suffered from CAPA, 13 of probable, and 10 of possible. In the majority of cases, culture, microscopy, and GM testing were in accordance with CAPA definition. However, we saw that the current definitions underscore to pay attention for fungal microscopy and GM detection in BALs, categorizing definitive CAPA diagnosis based on culture positive samples only. The spectrum of Aspergillus species involved Aspergillus fumigatus, followed by Aspergillus flavus, Aspergillus niger, and Aspergillus nidulans. We noticed changes in fungal epidemiology, but antifungal resistance was not an issue in our cohort. The study highlights that the diagnosis and incidence of CAPA is influenced by the application of laboratory-based diagnostic tests. Culture positivity as a single microbiological marker for probable definitions may overestimate CAPA cases and thus may trigger unnecessary antifungal treatment.

6.
Diagnostics (Basel) ; 11(12)2021 Nov 25.
Article in English | MEDLINE | ID: covidwho-1542448

ABSTRACT

The concept of intensive care units (ICU) has existed for almost 70 years, with outstanding development progress in the last decades. Multidisciplinary care of critically ill patients has become an integral part of every modern health care system, ensuing improved care and reduced mortality. Early recognition of severe medical and surgical illnesses, advanced prehospital care and organized immediate care in trauma centres led to a rise of ICU patients. Due to the underlying disease and its need for complex mechanical support for monitoring and treatment, it is often necessary to facilitate bed-side diagnostics. Immediate diagnostics are essential for a successful treatment of life threatening conditions, early recognition of complications and good quality of care. Management of ICU patients is incomprehensible without continuous and sophisticated monitoring, bedside ultrasonography, diverse radiologic diagnostics, blood gas analysis, coagulation and blood management, laboratory and other point-of-care (POC) diagnostic modalities. Moreover, in the time of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, particular attention is given to the POC diagnostic techniques due to additional concerns related to the risk of infection transmission, patient and healthcare workers safety and potential adverse events due to patient relocation. This review summarizes the most actual information on possible diagnostic modalities in critical care, with a special focus on the importance of point-of-care approach in the laboratory monitoring and imaging procedures.

7.
BMC Anesthesiol ; 21(1): 145, 2021 05 12.
Article in English | MEDLINE | ID: covidwho-1225757

ABSTRACT

BACKGROUND: Flow-controlled ventilation (FCV) is a novel ventilation method increasingly being used clinically, particularly during the current COVID-19 pandemic. However, the continuous flow pattern in FCV during inspiration and expiration has a significant impact on respiratory parameters and ventilatory settings compared to conventional ventilation modes. In addition, the constant flow combined with direct intratracheal pressure measurement allows determination of dynamic compliance and ventilation settings can be adjusted accordingly, reflecting a personalized ventilation approach. CASE PRESENTATION: A 50-year old women with confirmed SARS-CoV-2 infection suffering from acute respiratory distress syndrome (ARDS) was admitted to a tertiary medical center. Initial ventilation occurred with best standard of care pressure-controlled ventilation (PCV) and was then switched to FCV, by adopting PCV ventilator settings. This led to an increase in oxygenation by 30 %. Subsequently, to reduce invasiveness of mechanical ventilation, FCV was individualized by dynamic compliance guided adjustment of both, positive end-expiratory pressure and peak pressure; this intervention reduced driving pressure from 18 to 12 cm H2O. However, after several hours, compliance further deteriorated which resulted in a tidal volume of only 4.7 ml/kg. CONCLUSIONS: An individualized FCV approach increased oxygenation parameters in a patient suffering from severe COVID-19 related ARDS. Direct intratracheal pressure measurements allow for determination of dynamic compliance and thus optimization of ventilator settings, thereby reducing applied and dissipated energy. However, although desirable, this personalized ventilation strategy may reach its limits when lung function is so severely impaired that patient's oxygenation has to be ensured at the expense of lung protective ventilation concepts.


Subject(s)
COVID-19/therapy , Respiration, Artificial/methods , Air Pressure , COVID-19/complications , Compliance , Female , Humans , Intubation, Intratracheal , Middle Aged , Positive-Pressure Respiration , Precision Medicine , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Respiratory Mechanics , Stress, Mechanical , Tomography, X-Ray Computed , Ventilators, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL